| 1. | Degenerate elliptic ; weighted sobolev space 个体风险模型复合poisson分布索赔量 |
| 2. | Radon - nikodym property and girth of orlicz - sobolev spaces 序列空间的一致凸点 |
| 3. | Boundary properties of functions in relative sobolev space 空间中函数边界性质 |
| 4. | Boundedness of hardy - littelwood maximal functions in orlicz - sobolev spaces 极大函数的有界性 |
| 5. | Denseness of superposition of one function with itstranslation and dilation in sobolev space w2m 中单个函数的平移和伸缩组合的稠密性 |
| 6. | In this paper , we prove the existence of positive solutions and multiple solutions in sobolev space with variational methods 运用变分法讨论渐近线性dirichlet问题正解及多重解的存在性。 |
| 7. | Furthermore , we establish some results on the mixed legendre - hermite interpolation in certain non - isotropic sobolev space . they are the theoretical foundation of the mixed legendre - hermite pseu - dospectral method 在此基础上,我们建立了无穷带状区域中热传导方程的谱方法,证明了该方法的收敛性。 |
| 8. | Existence and uniqueness are proved by lax - milgram theorem for a type of degenerate divergence elliptic equation in a type of sobolev spaces with weight , and also the regularity will be studied 先用lax - milgram定理证明一类退化散度型椭圆型方程在带权sobolev空间中弱解的存在唯一性,然后证明解的正则性。 |
| 9. | Firstly , a weak formulation of this problem is derived . the existence , uniqueness and regularity of its solution are discussed . next , the mixed legendre - hermite polynomial approximation in non - isotropic sobolev space is proposed 首先,我们在第二章中讨论无穷带状区域上热传导方程的弱形式及其解的存在性,唯一性和正则性,这种弱形式适合于数值计算。 |
| 10. | In this paper , we analyze difference solutions of the burgers - kdv type equations with the periodic boundary condition by use of functional analysis method . the existence of difference solutions is proved by fixed - point theorem and the priori estimates of the difference solution are obtained using interpolation formula of sobolev space . the convergence and stability are proved 本文应用泛函分析方法对一系列burgers - kdv型方程周期边值问题的差分解进行了分析,运用各种不动点原理证明了差分解的存在性,应用sobolev空间的离散内插公式得到了差分解及其各阶差商的先验估计,利用得到的先验估计证明了差分解的收敛性和稳定性。 |